If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=84
We move all terms to the left:
X^2+X^2-(84)=0
We add all the numbers together, and all the variables
2X^2-84=0
a = 2; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·2·(-84)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*2}=\frac{0-4\sqrt{42}}{4} =-\frac{4\sqrt{42}}{4} =-\sqrt{42} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*2}=\frac{0+4\sqrt{42}}{4} =\frac{4\sqrt{42}}{4} =\sqrt{42} $
| b2+30=−11b | | x^2+11x-17=0 | | 4j+8=–8+2j | | 3(1y+10)=18 | | 210=-10(-5+x) | | 0.07p=7p | | 6(1+5x)=66 | | 12=-8u+6(u+5)u= | | 6x=25.5 | | 6x=25.5 | | 6x=25.5 | | 6x=25.5 | | -4(3s-5)-2s=-5s+2 | | 12x-25=37 | | 12x(-5)=37 | | ⅔(3x-5)⅗(2x-3)=3 | | 10x^2-25x^2=0 | | -4x+3,1=2x-2,9 | | 0,6y=24 | | 1x+0.5x=38.38 | | 2x−17=x−10 | | 12×+7y=34 | | –7+–4m=–59 | | /u6+ 24=26 | | –68=–5+7y | | 9x+3×3=10x-1 | | 25×x^2=16×(36-x^2) | | 5+5x=26+2x | | 7c=-8+5c | | 7c=8+5c | | -x-8,5=-3x-4,5 | | 3-x²×2=16 |